Chapter 3. Statistical Inference – Point Estimation

Problem in statistics:
A random variables X with p.d.f. of the form $f(x, \theta)$ where function f is known but parameter θ is unknown. We want to gain knowledge about θ.

What we have for inference:
There is a random sample X_1, \ldots, X_n from $f(x, \theta)$.

Statistical inferences

- **Point estimation**: $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$
- **Interval estimation**: Find statistics $T_1 = t_1(X_1, \ldots, X_n), T_2 = t_2(X_1, \ldots, X_n)$ such that $1 - \alpha = P(T_1 \leq \theta \leq T_2)$
- **Hypothesis testing**: $H_0 : \theta = \theta_0$ or $H_0 : \theta \geq \theta_0$.

Want to find a rule to decide if we accept or reject H_0.

Def. We call a statistic $\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n)$ an estimator of parameter θ if it is used to estimate θ. If $X_1 = x_1, \ldots, X_n = x_n$ are observed, then $\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n)$ is called an estimate of θ.

Two problems are concerned in estimation of θ:

(a) How can we evaluate an estimator $\hat{\theta}$ for its use in estimation of θ? Need criterion for this estimation.

(b) Are there general rules in deriving estimators? We will introduce two methods for deriving estimator of θ.

Def. We call an estimator $\hat{\theta}$ unbiased for θ if it satisfies

$$E_\theta(\hat{\theta}(X_1, \ldots, X_n)) = \theta, \forall \theta.$$

$$E_\theta(\hat{\theta}(X_1, \ldots, X_n)) = \left\{ \begin{array}{ll}
\int_{-\infty}^\infty \cdots \int_{-\infty}^\infty \hat{\theta}(x_1, \ldots, x_n) f(x_1, \ldots, x_n, \theta) dx_1 \cdots dx_n \\
\int_{-\infty}^\infty \theta^* f_{\hat{\theta}}(\theta^*) d\theta^* \end{array} \right.$$

where $\hat{\theta}(X_1, \ldots, X_n)$ is a r.v. with pdf $f_{\hat{\theta}}(\theta^*)$.

Def. If $E_\theta(\hat{\theta}(X_1, \ldots, X_n)) \neq \theta$ for some θ, we said that $\hat{\theta}$ is a biased estimator.
Example: \(X_1, \ldots, X_n \sim_{\text{iid}} N(\mu, \sigma^2) \), Suppose that our interest is \(\mu, X_1 \),

\[E_{\mu}(X_1) = \mu, \text{ is unbiased for } \mu, \]
\[\frac{1}{2}(X_1 + X_2), E\left(\frac{X_1 + X_2}{2}\right) = \mu, \text{ is unbiased for } \mu, \]
\[\bar{X}, E_{\mu}(\bar{X}) = \mu, \text{ is unbiased for } \mu, \]

\[\Rightarrow a_n \xrightarrow{n \to \infty} a, \text{ if } \epsilon > 0, \text{ there exists } \exists N > 0 \text{ such that } |a_n - a| < \epsilon \text{ if } n \geq N. \]

\{X_n\} is a sequence of r.v.'s. How can we define \(X_n \to X \) as \(n \to \infty \)?

Def. We say that \(X_n \) converges to \(X \), a r.v. or a constant, in probability if for \(\epsilon > 0 \),

\[P(|X_n - X| > \epsilon) \to 0, \text{ as } n \to \infty. \]

In this case, we denote \(X_n \xrightarrow{P} X \).

Thm.

If \(E(X_n) = a \) or \(E(X_n) \to a \) and \(\text{Var}(X_n) \to 0 \), then \(X_n \xrightarrow{P} a \).

Proof.

\[
E([X_n - a]^2) = E[(X_n - E(X_n) + E(X_n) - a)^2] \\
= E[(X_n - E(X_n))^2] + E[(E(X_n) - a)^2] + 2E[(X_n - E(X_n))(E(X_n) - a)] \\
= \text{Var}(X_n) + E((X_n) - a)^2
\]

Chebyshev’s Inequality :

\[P(|X_n - X| \geq \epsilon) \leq \frac{E(X_n - X)^2}{\epsilon^2} \text{ or } P(|X_n - \mu| \geq k\sigma) \leq \frac{1}{k^2} \]

For \(\epsilon > 0 \),

\[
0 \leq P(|X_n - a| > \epsilon) = P((X_n - a)^2 > \epsilon^2) \\
\leq \frac{E(X_n - a)^2}{\epsilon^2} = \frac{\text{Var}(X_n) + (E(X_n) - a)^2}{\epsilon^2} \to 0 \text{ as } n \to \infty.
\]

\(\Rightarrow P(|X_n - a| > \epsilon) \to 0, \text{ as } n \to \infty. \Rightarrow X_n \xrightarrow{P} a. \)

Thm. Weak Law of Large Numbers (WLLN)

If \(X_1, \ldots, X_n \) is a random sample with mean \(\mu \) and finite variance \(\sigma^2 \), then \(\bar{X} \xrightarrow{P} \mu \).
Proof.

\[E(\bar{X}) = \mu, \ Var(\bar{X}) = \frac{\sigma^2}{n} \rightarrow 0 \text{ as } n \rightarrow \infty. \Rightarrow \bar{X} \xrightarrow{P} \mu. \]

\[\square \]

Def. We sat that \(\hat{\theta} \) is a **consistent** estimator of \(\theta \) if \(\hat{\theta} \xrightarrow{P} \theta \).

Example: \(X_1, \ldots, X_n \) is a random sample with mean \(\mu \) and finite variance \(\sigma^2 \). Is \(X_1 \) a consistent estimator of \(\mu \)?

\[E(X_1) = \mu, \] \(X_1 \) is unbiased for \(\mu \).

Let \(\epsilon > 0 \),

\[P(|X_1 - \mu| > \epsilon) = 1 - P(|X_1 - \mu| \leq \epsilon) = 1 - P(\mu - \epsilon \leq X_1 \leq \mu + \epsilon) \]
\[= 1 - \int_{\mu-\epsilon}^{\mu+\epsilon} f_X(x) \, dx > 0, \rightarrow 0 \text{ as } n \rightarrow \infty. \]

\(\Rightarrow X \) is not a consistent estimator of \(\mu \)

\[E(\bar{X}) = \mu, \ Var(\bar{X}) = \frac{\sigma^2}{n} \rightarrow 0 \text{ as } n \rightarrow \infty. \]
\[\Rightarrow \bar{X} \xrightarrow{P} \mu. \]
\[\Rightarrow \bar{X} \text{ is a consistent estimator of } \mu. \]

\(\blacktriangleright \) Unbiasedness and consistency are two basic conditions for good estimator.

Moments:
Let \(X \) be a random variable having a p.d.f. \(f(x, \theta) \), the population \(k_{th} \) moment is defined by

\[E_{\theta}(X^k) = \begin{cases} \sum_{\text{all } x} x^k f(x, \theta), & \text{discrete} \\ \int_{-\infty}^{\infty} x^k f(x, \theta) \, dx, & \text{continuous} \end{cases} \]

The sample \(k_{th} \) moment is defined by \(\frac{1}{n} \sum_{i=1}^{n} X_i^k \).

Note:

\[E\left(\frac{1}{n} \sum_{i=1}^{n} X_i^k \right) = \frac{1}{n} \sum_{i=1}^{n} E(X_i^k) = \frac{1}{n} \sum_{i=1}^{n} E_{\theta}(X^k) = E_{\theta}(X^k) \]
Sample k_{th} moment is unbiased for population k_{th} moment.

$$\text{Var} \left(\frac{1}{n} \sum_{i=1}^{n} X_i^k \right) = \frac{1}{n^2} \text{Var} \left(\sum_{i=1}^{n} X_i^k \right) = \frac{1}{n^2} \sum_{i=1}^{n} \text{Var}(X_i^k) = \frac{1}{n} \text{Var}(X^k) \rightarrow 0 \text{ as } n \rightarrow \infty.$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_i^k \xrightarrow{P} \mathbb{E}_\theta(X^k).$$

$$\Rightarrow \frac{1}{n} \sum_{i=1}^{n} X_i^k \text{ is a consistent estimator of } \mathbb{E}_\theta(X^k).$$

Let X_1, \ldots, X_n be a random sample with mean μ and variance σ^2. The sample variance is defined by $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$. Want to show that S^2 is unbiased for σ^2.

$$\text{Var}(X) = \mathbb{E}[(X - \mu)^2] = \mathbb{E}[X^2 - 2\mu X + \mu^2] = \mathbb{E}(X^2) - \mu^2$$

$$\Rightarrow \mathbb{E}(X^2) = \text{Var}(X) + \mu^2 = \text{Var}(X) + (\mathbb{E}(X))^2$$

$$\mathbb{E}(\bar{X}) = \mu, \text{Var}(\bar{X}) = \frac{\sigma^2}{n}$$

$$\mathbb{E}(S^2) = \mathbb{E}(\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2) = \frac{1}{n-1} \mathbb{E}(\sum_{i=1}^{n} X_i^2 - 2\bar{X} \sum_{i=1}^{n} X_i + n\bar{X}^2)$$

$$= \frac{1}{n-1} \mathbb{E}(\sum_{i=1}^{n} X_i^2 - n\bar{X}^2) = \frac{1}{n-1} \left[\sum_{i=1}^{n} \mathbb{E}(X_i^2) - n\mathbb{E}(\bar{X}^2) \right]$$

$$= \frac{1}{n-1} \left[n\sigma^2 + n\mu^2 - n\left(\frac{\sigma^2}{n} + \mu^2 \right) \right] = \frac{1}{n-1} (n-1)\sigma^2 = \sigma^2$$

$$\Rightarrow S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2 \text{ is unbiased for } \sigma^2.$$

$$S^2 = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_i^2 - n\bar{X}^2 \right] = \frac{n}{n-1} \left[\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \bar{X}^2 \right] \xrightarrow{P} \mathbb{E}(X^2) - \mu^2 = \sigma^2 + \mu^2 - \mu^2 = \sigma^2$$

$$X_1, \ldots, X_n \text{ are iid with mean } \mu \text{ and variance } \sigma^2$$

$$X_1^2, \ldots, X_n^2 \text{ are iid r.v.'s with mean } \mathbb{E}(X^2) = \mu^2 + \sigma^2$$

By WLLN, $\frac{1}{n} \sum_{i=1}^{n} X_i^2 \xrightarrow{P} \mathbb{E}(X^2) = \mu^2 + \sigma^2$

$$\Rightarrow s^2 \xrightarrow{P} \sigma^2$$
Def. Let X_1, \ldots, X_n be a random sample from a distribution with p.d.f. $f(x, \theta)$

(a) If θ is univariate, the method of moment estimator $\hat{\theta}$ solve θ for $X = E_{\theta}(X)$

(b) If $\theta = (\theta_1, \theta_2)$ is bivariate, the method of moment estimator $(\hat{\theta}_1, \hat{\theta}_2)$ solves (θ_1, θ_2) for

$$\bar{X} = E_{\theta_1, \theta_2}(X), \frac{1}{n} \sum_{i=1}^{n} X_i^2 = E_{\theta_1, \theta_2}(X^2)$$

(c) If $\theta = (\theta_1, \ldots, \theta_k)$ is k-variate, the method of moment estimator $(\hat{\theta}_1, \ldots, \hat{\theta}_k)$ solves $\theta_1, \ldots, \theta_k$ for

$$\frac{1}{n} \sum_{i=1}^{n} X_i^j = E_{\theta_1, \ldots, \theta_k}(X^j), j = 1, \ldots, k$$

Example:

(a) $X_1, \ldots, X_n \overset{iid}{\sim} \text{Bernoulli}(p)$

Let $\bar{X} = E_p(X) = p$
⇒ The method of moment estimator of p is $\hat{p} = \bar{X}$

By WLLN, $\hat{p} = \bar{X} \overset{P}{\rightarrow} E_p(X) = p$ ⇒ \hat{p} is consistent for p.

$E(\hat{p}) = E(\bar{X}) = E(X) = p$ ⇒ \hat{p} is unbiased for p.

(b) Let X_1, \ldots, X_n be a random sample from Poisson(λ)

Let $\bar{X} = E_\lambda(X) = \lambda$
⇒ The method of moment estimator of λ is $\hat{\lambda} = \bar{X}$

$E(\hat{\lambda}) = E(\bar{X}) = \lambda$ ⇒ $\hat{\lambda}$ is unbiased for λ.

$\hat{\lambda} = \bar{X} \overset{P}{\rightarrow} E(X) = \lambda$ ⇒ $\hat{\lambda}$ is consistent for λ.

(c) Let X_1, \ldots, X_n be a random sample with mean μ and variance σ^2.

$\theta = (\mu, \sigma^2)$
Let $\bar{X} = E_{\mu, \sigma^2}(X) = \mu$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = E_{\mu, \sigma^2}(X^2) = \sigma^2 + \mu^2$$

⇒ Method of moment estimator are $\hat{\mu} = \bar{X}$.
\[\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2. \]

\(\overline{X} \) is unbiased and consistent estimator for \(\mu \).

\[
E(\hat{\sigma}^2) = E(\frac{1}{n} \sum (X_i - \overline{X})^2) = \frac{n-1}{n} E(\frac{1}{n-1} \sum (X_i - \overline{X})^2) = \frac{n-1}{n} \sigma^2 \neq \sigma^2
\]

\[\Rightarrow \hat{\sigma}^2 \text{ is not unbiased for } \sigma^2. \]

\[
\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 - \overline{X}^2 \rightarrow E(X^2) - \mu^2 = \sigma^2
\]

\[\Rightarrow \hat{\sigma}^2 \text{ is consistent for } \sigma^2. \]

Maximum Likelihood Estimator:
Let \(X_1, \ldots, X_n \) be a random sample with p.d.f. \(f(x, \theta) \).
The joint p.d.f. of \(X_1, \ldots, X_n \) is
\[
f(x_1, \ldots, x_n, \theta) = \prod_{i=1}^{n} f(x_i, \theta), x_i \in R, i = 1, \ldots, n
\]

Let \(\Theta \) be the space of possible values of \(\theta \). We call \(\Theta \) the parameter space.

Def. The likelihood function of a random sample is defined as its joint p.d.f.
as
\[
L(\theta) = L(\theta, x_1, \ldots, x_n) = f(x_1, \ldots, x_n, \theta), \theta \in \Theta.
\]
which is considered as a function of \(\theta \).
For \((x_1, \ldots, x_n) \) fixed, the value \(L(\theta, x_1, \ldots, x_n) \) is called the likelihood at \(\theta \).

Given observation \(x_1, \ldots, x_n \), the likelihood \(L(\theta, x_1, \ldots, x_n) \) is considered as the probability that \(X_1 = x_1, \ldots, X_n = x_n \) occurs when \(\theta \) is true.

Def. Let \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) be any value of \(\theta \) that maximizes \(L(\theta, x_1, \ldots, x_n) \).
Then we call \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) the maximum likelihood estimator (m.l.e) of \(\theta \). When \(X_1 = x_1, \ldots, X_n = x_n \) is observed, we call \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) the maximum likelihood estimate of \(\theta \).

Note:
(a) Why m.l.e ?
When \(L(\theta_1, x_1, \ldots, x_n) \geq L(\theta_2, x_1, \ldots, x_n) \),
we are more confident to believe \(\theta = \theta_1 \) than to believe \(\theta = \theta_2 \).
(b) How to derive m.l.e.?
\[\frac{\partial \ln x}{\partial x} = \frac{1}{x} > 0 \Rightarrow \ln x \text{ is } \nearrow \text{ in } x \]
⇒ If \(L(\theta_1) \geq L(\theta_2) \), then \(\ln L(\theta_1) \geq \ln L(\theta_2) \)
If \(\hat{\theta} \) is the m.l.e., then
\[L(\hat{\theta}, x_1, \ldots, x_n) = \max_{\theta \in \Theta} L(\theta, x_1, \ldots, x_n) \]
and
\[\ln L(\hat{\theta}, x_1, \ldots, x_n) = \max_{\theta \in \Theta} \ln L(\theta, x_1, \ldots, x_n) \]
Two cases to solve m.l.e.:
(b.1) \[\frac{\partial \ln L(\theta)}{\partial \theta} = 0 \]
(b.2) \(L(\theta) \) is monotone. Solve \(\max_{\theta \in \Theta} L(\theta, x_1, \ldots, x_n) \) from monotone property.

Order statistics:
Let \((X_1, \ldots, X_n)\) be a random sample with d.f. \(F \) and p.d.f. \(f \).
Let \((Y_1, \ldots, Y_n)\) be a permutation \((X_1, \ldots, X_n)\) such that \(Y_1 \leq Y_2 \leq \cdots \leq Y_n \).
Then we call \((Y_1, \ldots, Y_n)\) the order statistic of \((X_1, \ldots, X_n)\) where \(Y_1 \) is the first (smallest) order statistic, \(Y_2 \) is the second order statistic, \ldots, \(Y_n \) is the largest order statistic.

If \((X_1, \ldots, X_n)\) are independent, then
\[
P(X_1 \in A_1, X_2 \in A_2, \ldots, X_n \in A_n) = \int_{A_n} \cdots \int_{A_1} f(x_1, \ldots, x_n) dx_1 \cdots dx_n
\]
\[
= \int_{A_n} f_n(x_n) dx_n \cdots \int_{A_1} f_1(x_1) dx_1
\]
\[
= P(X_n \in A_n) \cdots P(X_1 \in A_1)
\]

Thm. Let \((X_1, \ldots, X_n)\) be a random sample from a “continuous distribution” with p.d.f. \(f(x) \) and d.f \(F(x) \). Then the p.d.f. of \(Y_n = \max\{X_1, \ldots, X_n\} \) is
\[
g_n(y) = n(F(y))^{n-1} f(y)
\]
and the p.d.f. of \(Y_1 = \min\{X_1, \ldots, X_n\} \) is
\[
g_1(y) = n(1 - F(y))^{n-1} f(y)
\]

Proof. This is a \(R^n \to R \) transformation. Distribution function of \(Y_n \) is
\[
G_n(y) = P(Y_n \leq y) = P(\max\{X_1, \ldots, X_n\} \leq y) = P(X_1 \leq y, \ldots, X_n \leq y)
\]
\[
= P(X_1 \leq y) P(X_2 \leq y) \cdots P(X_n \leq y) = (F(y))^n
\]
⇒ p.d.f. of \(Y_n \) is
\[
g_n(y) = D_y(F(y))^n = n(F(y))^{n-1} f(y)
\]
Distribution function of \(Y_1 \) is
\[
G_1(y) = P(Y_1 \leq y) = P(\min\{X_1, \ldots, X_n\} \leq y) = 1 - P(\min\{X_1, \ldots, X_n\} > y)
\]
\[
= 1 - P(X_1 > y, X_2 > y, \ldots, X_n > y) = 1 - P(X_1 > y)P(X_2 > y) \cdots P(X_n > y)
\]
\[
= 1 - (1 - F(y))^n
\]
⇒ p.d.f. of \(Y_1 \) is
\[
g_1(y) = D_y(1 - (1 - F(y))^n) = n(1 - F(y))^{n-1} f(y)
\]

Example: Let \((X_1, \ldots, X_n)\) be a random sample from \(U(0, \theta) \).
Find m.l.e. of \(\theta \). Is it unbiased and consistent?
sol: The p.d.f. of \(X \) is
\[
f(x, \theta) = \begin{cases} \frac{1}{\theta} & \text{if } 0 \leq x \leq \theta \\ 0 & \text{elsewhere.} \end{cases}
\]
Consider the indicator function
\[
I_{(a,b)}(x) = \begin{cases} 1 & \text{if } a \leq x \leq b \\ 0 & \text{elsewhere.} \end{cases}
\]
Then \(f(x, \theta) = \frac{1}{\theta} I_{[0,\theta]}(x) \).
The likelihood function is
\[
L(\theta) = \prod_{i=1}^{n} f(x_i, \theta) = \prod_{i=1}^{n} \frac{1}{\theta} I_{[0,\theta]}(x_i) = \frac{1}{\theta^n} \prod_{i=1}^{n} I_{[0,\theta]}(x_i)
\]
Let \(Y_n = \max\{X_1, \ldots, X_n\} \)
Then \(\prod_{i=1}^{n} I_{[0,\theta]}(x_i) = 1 \iff 0 \leq x_i \leq \theta, \) for all \(i = 1, \ldots, n \iff 0 \leq y_n \leq \theta \)
We then have
\[
L(\theta) = \frac{1}{\theta^n} I_{[0,\theta]}(y_n) = \frac{1}{\theta^n} I_{[y_n, \infty)}(\theta) = \begin{cases} \frac{1}{\theta^n} & \text{if } \theta \geq y_n \\ 0 & \text{if } \theta < y_n \end{cases}
\]
\(L(\theta) \) is maximized when \(\theta = y_n \). Then m.l.e. of \(\theta \) is \(\hat{\theta} = Y_n \)
The d.f. of \(x \) is
\[
F(x) = P(X \leq x) = \int_{0}^{x} \frac{1}{\theta} dt = \frac{x}{\theta}, 0 \leq x \leq \theta
\]
The p.d.f. of Y is

\[g_n(y) = n\left(\frac{y}{\theta}\right)^{n-1} \frac{1}{\theta} = n\frac{y^{n-1}}{\theta^n}, \quad 0 \leq y \leq \theta \]

\[E(Y_n) = \int_0^\theta y n\frac{y^{n-1}}{\theta^n} dy = \frac{n}{n+1} \theta \neq \theta \Rightarrow \text{m.l.e. } \hat{\theta} = Y_n \text{ is not unbiased.} \]

However, \[E(Y_n) = \frac{n}{n+1} \theta \to \theta \text{ as } n \to \infty, \text{ m.l.e. } \hat{\theta} \text{ is asymptotically unbiased.} \]

\[E(Y_n^2) = \int_0^\theta y^2 n\frac{y^{n-1}}{\theta^n} dy = \frac{n}{n+2} \theta^2 \]

\[\text{Var}(Y_n) = E(Y_n^2) - (E(Y_n))^2 = \frac{n}{n+2} \theta^2 - \left(\frac{n}{n+1}\right)^2 \theta^2 \to \theta^2 - \theta^2 = 0 \text{ as } n \to \infty. \]

\[\Rightarrow Y_n \overset{p}{\to} \theta \Rightarrow \text{m.l.e. } \hat{\theta} = Y_n \text{ is consistent for } \theta. \]

Is there unbiased estimator for θ?

\[E\left(\frac{n+1}{n} Y_n\right) = \frac{n+1}{n} E(Y_n) = \frac{n+1}{n} \frac{n}{n+1} \theta = \theta \]

\[\Rightarrow \frac{n+1}{n} Y_n \text{ is unbiased for } \theta. \]

Example:

(a) \[Y \sim b(n, p) \]

The likelihood function is

\[L(p) = f_Y(y, p) = \binom{n}{y} p^y (1-p)^{n-y} \]

\[\ln L(p) = \ln \binom{n}{y} + y \ln p + (n-y) \ln (1-p) \]

\[\frac{\partial \ln L(p)}{\partial p} = \frac{y}{p} - \frac{n-y}{1-p} = 0 \iff \frac{y}{p} = \frac{n-y}{1-p} \iff y(1-p) = p(n-y) \iff y = np \]

\[\Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \]

\[E(\hat{p}) = \frac{1}{n} E(Y) = p \Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \text{ is unbiased.} \]

\[\text{Var}(\hat{p}) = \frac{1}{n^2} \text{Var}(Y) = \frac{1}{n} p(1-p) \to 0 \text{ as } n \to \infty \]

\[\Rightarrow \text{m.l.e. } \hat{p} = \frac{Y}{n} \text{ is consistent for } p. \]

(b) \[X_1, \ldots, X_n \text{ are a random sample from } N(\mu, \sigma^2). \text{ Want m.l.e.'s of } \mu \text{ and } \sigma^2 \]

The likelihood function is

\[L(\mu, \sigma^2) = \prod_{i=1}^{\infty} \frac{1}{\sqrt{2\pi}(\sigma^2)^{\frac{3}{2}}} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \left(2\pi\right)^{-\frac{3}{4}}(\sigma^2)^{-\frac{3}{2}} e^{-\frac{\sum_{i=1}^{n}(x_i-\mu)^2}{2\sigma^2}} \]

21
\[
\ln L(\mu, \sigma^2) = \left(\frac{n}{2}\right) \ln (2\pi) - \frac{n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2
\]

\[
\frac{\partial \ln L(\mu, \sigma^2)}{\partial \mu} = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2 = 0 \Rightarrow \hat{\mu} = \bar{X}
\]

\[
\frac{\partial \ln L(\mu, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \bar{X})^2 = 0 \Rightarrow \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2
\]

E(\hat{\mu}) = E(\bar{X}) = \mu \text{ (unbiased), } Var(\hat{\mu}) = Var(\bar{X}) = \frac{\sigma^2}{n} \to 0 \text{ as } n \to \infty \Rightarrow \text{ m.l.e. } \hat{\mu} \text{ is consistent for } \mu.

E(\hat{\sigma}^2) = E\left(\frac{1}{n} \sum_{i=1}^{n} (X_i - \bar{X})^2\right) = \frac{n-1}{n} \sigma^2 \neq \sigma^2 \text{ (biased).}

E(\hat{\sigma}^2) = \frac{n-1}{n} \sigma^2 \to \sigma^2 \text{ as } n \to \infty \Rightarrow \hat{\sigma}^2 \text{ is asymptotically unbiased.}

Var(\hat{\sigma}^2) = \text{Var}\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2\right) = \frac{1}{n^2} \text{Var}\left(\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{\sigma^2}\right)

= \frac{\sigma^4}{n^2} \text{Var}\left(\frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{\sigma^2}\right) = \frac{2(n-1)}{n^2} \sigma^4 \to 0 \text{ as } n \to \infty

\Rightarrow \text{ m.l.e. } \hat{\sigma}^2 \text{ is consistent for } \sigma^2.

Suppose that we have m.l.e. \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) for parameter \(\theta \) and our interest is a new parameter \(\tau(\theta) \), a function of \(\theta \).

What is the m.l.e. of \(\tau(\theta) \)?

The space of \(\tau(\theta) \) is \(T = \{ \tau : \exists \theta \in \Theta \text{ s.t. } \tau = \tau(\theta) \} \)

Thm. If \(\hat{\theta} = \hat{\theta}(x_1, \ldots, x_n) \) is the m.l.e. of \(\theta \) and \(\tau(\theta) \) is a 1-1 function of \(\theta \), then m.l.e. of \(\tau(\theta) \) is \(\tau(\theta) \)

Proof. The likelihood function for \(\theta \) is \(L(\theta, x_1, \ldots, x_n) \). Then the likelihood function for \(\tau(\theta) \) can be derived as follows:

\[
L(\theta, x_1, \ldots, x_n) = L(\tau^{-1}(\tau(\theta)), x_1, \ldots, x_n)
\]

\[
= M(\tau(\theta), x_1, \ldots, x_n)
\]

\[
= M(\tau, x_1, \ldots, x_n), \tau \in T
\]
\[M(\tau(\hat{\theta}), x_1, \ldots, x_n) = L^{-1}(\tau(\hat{\theta}), x_1, \ldots, x_n) \]
\[= L(\hat{\theta}, x_1, \ldots, x_n) \]
\[\geq L(\theta, x_1, \ldots, x_n), \forall \theta \in \Theta \]
\[= L^{-1}(\tau(\theta)), x_1, \ldots, x_n) \]
\[= M(\tau(\theta), x_1, \ldots, x_n), \forall \theta \in \Theta \]
\[= M(\tau, x_1, \ldots, x_n), \tau \in T \]

\[\Rightarrow \tau(\hat{\theta}) \text{ is m.l.e. of } \tau(\theta). \]

This is the invariance property of m.l.e.

\[\square \]

Example:

(1) If \(Y \sim b(n, p) \), m.l.e of \(p \) is \(\hat{p} = \frac{Y}{n} \)

<table>
<thead>
<tr>
<th>(\tau(p))</th>
<th>m.l.e. of (\tau(p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p^2)</td>
<td>(\hat{p}^2 = \left(\frac{Y}{n} \right)^2)</td>
</tr>
<tr>
<td>(\sqrt{p})</td>
<td>(\hat{\sqrt{p}} = \sqrt{\frac{Y}{n}})</td>
</tr>
<tr>
<td>(e^p)</td>
<td>(\hat{e^p} = e^{\frac{Y}{n}})</td>
</tr>
<tr>
<td>(e^{-p})</td>
<td>(\hat{e^{-p}} = e^{-\frac{Y}{n}})</td>
</tr>
</tbody>
</table>

\(p(1 - p) \) is not a 1-1 function of \(p \).

(2) \(X_1, \ldots, X_n \) \(\text{iid} \sim N(\mu, \sigma^2) \), m.l.e.'s of \((\mu, \sigma^2) \) is \((\bar{X}, \sqrt{\frac{1}{n} \sum (X_i - \bar{X})^2}) \).

m.l.e.'s of \((\mu, \sigma) \) is \((\bar{X}, \sqrt{\frac{1}{n} \sum (X_i - \bar{X})^2}) \) (\(: \sigma \in (0, \infty) \). \(\because \sigma^2 \rightarrow \sigma \) is 1-1)

You can also solve

\[\frac{\partial}{\partial \mu} \ln L(\mu, \sigma^2, x_1, \ldots, x_n) = 0 \]
\[\frac{\partial}{\partial \sigma} \ln L(\mu, \sigma^2, x_1, \ldots, x_n) = 0 \text{ for } \mu, \sigma \]

(\(\mu^2, \sigma \)) is not a 1-1 function of \((\mu, \sigma^2) \).

\(\because \mu \in (-\infty, \infty) \). \(\because \mu \rightarrow \mu^2 \) isn’t 1-1

Best estimator:

\textbf{Def.} An unbiased estimator \(\hat{\theta} = \hat{\theta}(X_1, \ldots, X_n) \) is called a uniformly minimum variance unbiased estimator (UMVUE) or best estimator if for any unbiased estimator \(\hat{\theta^*} \), we have

\[\text{Var}_\theta \hat{\theta} \leq \text{Var}_\theta \hat{\theta^*}, \text{ for } \theta \in \Theta \]

(\(\hat{\theta} \) is uniformly better than \(\hat{\theta^*} \) in variance.)

23
There are several ways in deriving UMVUE of θ.

Cramer-Rao lower bound for variance of unbiased estimator:

Regularity conditions:

(a) Parameter space Θ is an open interval. $(a, \infty), (a, b), (b, \infty)$, a, b are constants not depending on θ.

(b) Set $\{x : f(x, \theta) = 0\}$ is independent of θ.

(c) $\int \frac{\partial f(x, \theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int f(x, \theta) dx = 0$

(d) If $T = t(x_1, \ldots, x_n)$ is an unbiased estimator, then

$$\int t \frac{\partial f(x, \theta)}{\partial \theta} dx = \frac{\partial}{\partial \theta} \int tf(x, \theta) dx$$

Thm. Cramer-Rao (C-R)

Suppose that the regularity conditions hold.

If $\hat{\tau}(\theta) = t(X_1, \ldots, X_n)$ is unbiased for $\tau(\theta)$, then

$$\text{Var}_\theta \hat{\tau}(\theta) \geq \frac{(\tau'(\theta))^2}{n E_\theta \left[(\frac{\partial \ln f(x, \theta)}{\partial \theta})^2 \right]} = \frac{(\tau'(\theta))^2}{-n E_\theta \left[(\frac{\partial^2 \ln f(x, \theta)}{\partial \theta^2}) \right]}$$

for $\theta \in \Theta$

Proof. Consider only the continuous distribution.

$$E_\theta \left[\frac{\partial \ln f(x, \theta)}{\partial \theta} \right] = \int_{-\infty}^{\infty} \frac{\partial \ln f(x, \theta)}{\partial \theta} f(x, \theta) dx = \int_{-\infty}^{\infty} \frac{\partial f(x, \theta)}{\partial \theta} dx = 0$$

$$\tau(\theta) = E_\theta \hat{\tau}(\theta) = E_\theta(t(x_1, \ldots, x_n)) = \int \cdots \int t(x_1, \ldots, x_n) \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i$$

Taking derivatives both sides.

$$\tau'(\theta) = \frac{\partial}{\partial \theta} \int \cdots \int t(x_1, \ldots, x_n) \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i - \tau(\theta) \frac{\partial}{\partial \theta} \int \cdots \int \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i$$

$$= \int \cdots \int t(x_1, \ldots, x_n) \frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i - \tau(\theta) \frac{\partial}{\partial \theta} \int \cdots \int \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i$$

$$= \int \cdots \int (t(x_1, \ldots, x_n) - \tau(\theta)) \frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i$$
Now,
\[
\frac{\partial}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) = \frac{\partial}{\partial \theta} [f(x_1, \theta)f(x_2, \theta) \cdots f(x_n, \theta)]
\]
\[
= (\frac{\partial}{\partial \theta} f(x_1, \theta)) \prod_{i \neq 1} f(x_i, \theta) + \cdots + (\frac{\partial}{\partial \theta} f(x_n, \theta)) \prod_{i \neq n} f(x_i, \theta)
\]
\[
= \sum_{j=1}^{n} \frac{\partial}{\partial \theta} f(x_j, \theta) \prod_{i \neq j} f(x_i, \theta)
\]
\[
= \sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta} f(x_j, \theta) \prod_{i \neq j} f(x_i, \theta)
\]
\[
= \sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta} \prod_{j=1}^{n} f(x_i, \theta)
\]

Cauchy-Swartz Inequality
\[
[E(XY)]^2 \leq E(X^2)E(Y^2)
\]

Then
\[
\tau'(\theta) = \int \cdots \int (t(x_1, \ldots, x_n) - \tau(\theta)) \left(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta} \prod_{i=1}^{n} f(x_i, \theta) \prod_{i=1}^{n} dx_i \right)
\]
\[
= E[(t(x_1, \ldots, x_n) - \tau(\theta)) \sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta}]
\]
\[
(\tau'(\theta))^2 \leq E[(t(x_1, \ldots, x_n) - \tau(\theta))^2] E[(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2]
\]
\[
\Rightarrow \text{Var}(\hat{\tau}(\theta)) \geq \frac{(\tau'(\theta))^2}{E[(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2]}
\]

Since
\[
E[(\sum_{j=1}^{n} \frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2] = \sum_{j=1}^{n} E(\frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2 + \sum_{i \neq j} E(\frac{\partial \ln f(x_j, \theta)}{\partial \theta} \frac{\partial \ln f(x_i, \theta)}{\partial \theta})
\]
\[
= \sum_{j=1}^{n} E(\frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2
\]
\[
= n E(\frac{\partial \ln f(x_j, \theta)}{\partial \theta})^2
\]

Cauchy-Swartz Inequality
\[
[E(XY)]^2 \leq E(X^2)E(Y^2)
\]
Then, we have
\[
\text{Var}_\theta \hat{\tau}(\theta) \geq \frac{(\tau'(\theta))^2}{nE_\theta \left[\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2\right]}
\]
You may further check that
\[
E_\theta \left(\frac{\partial^2 \ln f(x,\theta)}{\partial \theta^2}\right) = -E_\theta \left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2
\]

\textbf{Thm.} If there is an unbiased estimator \(\hat{\tau}(\theta)\) with variance achieving the Cramer-Rao lower bound
\[
\frac{(\tau'(\theta))^2}{-nE_\theta \left[\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2\right]},
\]
then \(\hat{\tau}(\theta)\) is a UMVUE of \(\tau(\theta)\).

\textbf{Note:}
If \(\tau(\theta) = \theta\), then any unbiased estimator \(\hat{\theta}\) satisfies
\[
\text{Var}_\theta \hat{\theta}(\theta) \geq \frac{(\tau'(\theta))^2}{-nE_\theta \left[\left(\frac{\partial \ln f(x,\theta)}{\partial \theta}\right)^2\right]}
\]

\textbf{Example:}
(a) \(X_1, \ldots, X_n \overset{\text{iid}}{\sim} \text{Poisson}(\lambda), E(X) = \lambda, \text{Var}(X) = \lambda\).

\(\text{MLE} \hat{\lambda} = \bar{X}, E(\hat{\lambda}) = \lambda, \text{Var}(\hat{\lambda}) = \frac{\lambda}{n}.\)

\(\text{p.d.f. } f(x,\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, \ldots\)

\[\Rightarrow \ln f(x,\lambda) = x \ln \lambda - \lambda - \ln x!\]
\[\Rightarrow \frac{\partial}{\partial \lambda} \ln f(x,\lambda) = \frac{x}{\lambda} - 1\]
\[\Rightarrow \frac{\partial^2}{\partial \lambda^2} \ln f(x,\lambda) = \frac{-x}{\lambda^2}\]
\[\Rightarrow \text{E}\left(\frac{\partial^2}{\partial \lambda^2} \ln f(x,\lambda)\right) = \text{E}\left(\frac{-x}{\lambda^2}\right) = -\frac{E(X)}{\lambda^2} = -\frac{1}{\lambda}\]

Cramer-Rao lower bound is
\[
\frac{1}{-n\left(-\frac{1}{\lambda}\right)} = \frac{\lambda}{n} = \text{Var}(\hat{\lambda})
\]

\[\Rightarrow \text{MLE} \hat{\lambda} = \bar{X} \text{ is the UMVUE of } \lambda.\]
(b) $X_1, \ldots, X_n \sim \text{Bernoulli}(p)$, $E(X) = p$, $\text{Var}(X) = p(1-p)$.

Want UMVUE of p.

p.d.f $f(x, p) = p^x (1-p)^{1-x}$

$\Rightarrow \ln f(x, p) = x \ln p + (1-x) \ln(1-p)$

$\frac{\partial}{\partial p} \ln f(x, p) = \frac{x}{p} - \frac{1-x}{1-p}$

$\frac{\partial^2}{\partial p^2} \ln f(x, p) = -\frac{x}{p^2} + \frac{1-x}{(1-p)^2}$

$E\left(\frac{\partial^2}{\partial p^2} \ln f(X, p) \right) = E\left(-\frac{X}{p^2} + \frac{1-X}{(1-p)^2} \right) = -\frac{1}{p} + \frac{1}{1-p} = -\frac{1}{p(1-p)}$

C-R lower bound for p is

$$\frac{1}{-n\left(-\frac{1}{p(1-p)}\right)} = \frac{p(1-p)}{n}$$

m.l.e. of p is $\hat{p} = \bar{X}$

$E(\hat{p}) = E(\bar{X}) = p$, $\text{Var}(\hat{p}) = \text{Var}(\bar{X}) = \frac{p(1-p)}{n} = \text{C-R lower bound}$.

\Rightarrow MLE \hat{p} is the UMVUE of p.