本課程是由交通大學應用數學系提供。
本課程主要讓學生了解並熟悉研究財務金融方面所需之數學工具。
課程用書:S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.
參考用書:
為求學習成效完美,請購買課本!
授課教師 | 應用數學系 吳慶堂老師 |
---|---|
課程學分 | 3學分 |
授課年度 | 99學年度 |
授課對象 | 碩士班學生 |
預備知識 | 微積分 |
課程提供 | 課程影音 課程綱要 課程行事曆 |
週次 | 課程內容 | 課程影音 |
---|---|---|
單元七 Coutinuous-time Martingales 7.1 Stochastic process (1/2) | 線上觀看 | |
7.1 Stochastic process (2/2) | 線上觀看 | |
7.2 Uniform integrability | 線上觀看 | |
7.3 Martingale theory in continuous-time | 線上觀看 | |
7.4 Local martingales | 線上觀看 | |
7.5 Doob-Meyer decomposition | 線上觀看 | |
7.6 Semimartingales | 線上觀看 | |
單元八 Brownian Motions 8.1 Scaled random walk | 線上觀看 | |
8.2 Brownian motions | 線上觀看 | |
8.3 The Brownian sample paths | 線上觀看 | |
8.4 Exponential martingales | 線上觀看 | |
8.5 d-dimensional Brownian motions | 線上觀看 | |
單元九 Stochastic Integrals 9.1 Construction of stochastic integrals with respect to martingales (1/3) | 線上觀看 | |
9.1 Construction of stochastic integrals with respect to martingales (2/3) | 線上觀看 | |
9.1 Construction of stochastic integrals with respect to martingales (3/3) | 線上觀看 | |
9.2 Stochastic integrals with respect to semimartingales | 線上觀看 | |
9.3 Stochastic integrals with respect to local martingales | 線上觀看 | |
9.4 Itô formula (1/2) | 線上觀看 | |
9.4 Itô formula (2/2) | 線上觀看 | |
9.5 Integration by parts | 線上觀看 | |
9.6 Martingale representation theorem | 線上觀看 | |
9.7 Change of Measures | 線上觀看 | |
9.8 Girsanov theorem | 線上觀看 | |
9.9 Local times | 線上觀看 | |
單元十 Stochastic Differential Equations 10.1 Examples and some solution methods (1/2) | 線上觀看 | |
10.1 Examples and some solution methods (2/2) | 線上觀看 | |
10.2 An existence and uniqueness result | 線上觀看 | |
10.3 Weak and strong solutions | 線上觀看 | |
10.4 Feynman-Kac theorem | 線上觀看 | |
單元十一 Continuous-Time Models 11.1 Market portfolios and arbitrage | 線上觀看 | |
11.2 Equivalent local martingale measures | 線上觀看 | |
11.3 Completeness | 線上觀看 | |
11.4 Pricing for attainable contingent claim | 線上觀看 | |
11.5 Black-Scholes-Merton formula | 線上觀看 | |
11.6 The Greeks | 線上觀看 | |
11.7 Parity rrelations | 線上觀看 | |
單元十二 Hedging 12.1 Hedging strategy for the simple contingent claim 12.2 Delta and gamma hedging | 線上觀看 | |
Appendix F、Characteristic Functions | 線上觀看 | |
Appendix G、Differntial Equations | 線上觀看 | |
Appendix H、Convex Analysis | 線上觀看 |
課程目標
本課程主要讓學生了解並熟悉研究財務金融方面所需之數學工具。
課程章節
章節 | 主題內容 |
單元七 Continuous-Time Martingales | 7.1 Stochastic processes 7.2 Uniform integrability 7.3 Martingale theory in continuous-time 7.4 Local martingales 7.5 Doob-Meyer decomposition 7.6 Semimartingales |
單元八 Brownian Motions | 8.1 Scaled random walk 8.2 Brownian motions 8.3 The Brownian sample paths 8.4 Exponential martingales 8.5 d-dimensional Brownian motions |
單元九 Stochastic Integrals | 9.1 Construction of stochastic integrals with respect to martingales 9.2 Stochastic integrals with respect to semimartingales 9.3 Itô formula 9.4 Integration by parts 9.5 Martingale representation theorem 9.6 Girsanov theorem 9.7 Local times |
單元十 Stochastic Differential Equations | 10.1 Examples and some solution methods 10.2 An existence and uniqueness result 10.3 Weak and strong solutions 10.4 Feynman-Kac theorem |
單元十一 Continuous-Time Models | 11.1 Market portfolios and arbitrage 11.2 Equivalent local martingale measures 11.3 Completeness 11.4 Pricing for attainable contingent claim 11.5 Black-Scholes-Merton formula 11.6 Parity relations 11.7 The greeks |
單元十二 Hedging | 12.1 Hedging strategy for the simple contingent claim 12.2 Delta and gamma hedging 12.3 Superhedging 12.4 Quantile hedging |
單元六 Volatility | 13.1 Historical volatility 13.2 Implied volatility |
Appendix | F . Convex Analysis |
課程書目
S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.
參考書目
T. M. Apostol: Mathematical Analysis, Second Edition
M. Baxter and A. Rennie: Financial Calculus.
T. Björk: Arbitrage Theory in Continuous Time.
K. L. Chung: A Course in Probability Theory, Second Edition.
F. Delbaen and W. Schachermayer: The Mathematics of Arbitrage.
J. Elstrodt: Maβ- und Integrationstheorie, Third Edition.
H. Föllmer and A. Schied: Stochastic Finance. An Introduction in Discrete Time.
J. Jacod and Ph. Protter: Probability Essentials.
J. C. Hull: Options, Futures, & Other Derivatives, Sixth Edition.
I. Karatzas: Lectures on the Mathematics of Finance. I. Karatzas and S. E. Shreve: Brownian Motion and Stochastic Calculus, Second Edition.
I. Karatzas and S. E. Shreve: Method of Mathematical Finance.
D. Lamberton and B. Lapeyre: Introduction to Stochastic Calculus Applied to Finance.
B. Øksendal: Stochastic Differential Equations, An Introduction with Applications,Sixth Edition.
R. T. Rockafellar: Convex Analysis.
H. L. Royden: Real Analysis, Third Edition.
A.N. Shiryaev: Probability Theory, Second Edition.
S. E. Shreve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
R. L. Wheeden and A. Zygmund: Measure and integral.
評分標準
項目 | 百分比 |
平時成績(作業) | 40% |
期中考 | 30% |
期末考 | 30% |
本課程行事曆提供課程進度與考試資訊參考。
章節 | 主題內容 |
單元七 Continuous-Time Martingales | 7.1 Stochastic processes 7.2 Uniform integrability 7.3 Martingale theory in continuous-time 7.4 Local martingales 7.5 Doob-Meyer decomposition 7.6 Semimartingales |
單元八 Brownian Motions | 8.1 Scaled random walk 8.2 Brownian motions 8.3 The Brownian sample paths 8.4 Exponential martingales 8.5 d-dimensional Brownian motions |
單元九 Stochastic Integrals | 9.1 Construction of stochastic integrals with respect to martingales 9.2 Stochastic integrals with respect to semimartingales 9.3 Itô formula 9.4 Integration by parts 9.5 Martingale representation theorem 9.6 Girsanov theorem 9.7 Local times |
單元十 Stochastic Differential Equations | 10.1 Examples and some solution methods 10.2 An existence and uniqueness result 10.3 Weak and strong solutions 10.4 Feynman-Kac theorem |
單元十一 Continuous-Time Models | 11.1 Market portfolios and arbitrage 11.2 Equivalent local martingale measures 11.3 Completeness 11.4 Pricing for attainable contingent claim 11.5 Black-Scholes-Merton formula 11.6 Parity relations 11.7 The greeks |