Introduction to Financial Mathematics II

財務數學導論(二)

本課程是由交通大學應用數學系提供。
本課程主要讓學生了解並熟悉研究財務金融方面所需之數學工具。

課程用書:S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.

參考用書:

  1. T. M. Apostol: Mathematical Analysis, Second Edition
  2. M. Baxter and A. Rennie: Financial Calculus.
  3. T. Björk: Arbitrage Theory in Continuous Time.
  4. K. L. Chung: A Course in Probability Theory, Second Edition.
  5. F. Delbaen and W. Schachermayer: The Mathematics of Arbitrage.
  6. J. Elstrodt: Maβ- und Integrationstheorie, Third Edition.
  7. H. Föllmer and A. Schied: Stochastic Finance. An Introduction in Discrete Time.
  8. J. Jacod and Ph. Protter: Probability Essentials.
  9. J. C. Hull: Options, Futures, & Other Derivatives, Sixth Edition.
  10. I. Karatzas: Lectures on the Mathematics of Finance.
  11. I. Karatzas and S. E. Shreve: Brownian Motion and Stochastic Calculus, Second  Edition.
  12. I. Karatzas and S. E. Shreve: Method of Mathematical Finance.
  13. D. Lamberton and B. Lapeyre: Introduction to Stochastic Calculus Applied to Finance.
  14. B. Øksendal: Stochastic Differential Equations, An Introduction with Applications,Sixth Edition.
  15. R. T. Rockafellar: Convex Analysis.
  16. H. L. Royden: Real Analysis, Third Edition.
  17. A.N. Shiryaev: Probability Theory, Second Edition.
  18. S. E. Shreve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
  19. R. L. Wheeden and A. Zygmund: Measure and integral. 

為求學習成效完美,請購買課本!

 

授課教師 應用數學系 吳慶堂老師
課程學分 3學分
授課年度 99學年度
授課對象 碩士班學生
預備知識 微積分
課程提供 課程影音   課程綱要   課程行事曆

課程目標

本課程主要讓學生了解並熟悉研究財務金融方面所需之數學工具。

 

課程章節

 

章節 主題內容
單元七 Continuous-Time Martingales7.1 Stochastic processes
7.2 Uniform integrability
7.3 Martingale theory in continuous-time
7.4 Local martingales
7.5 Doob-Meyer decomposition
7.6 Semimartingales
單元八 Brownian Motions8.1 Scaled random walk
8.2 Brownian motions
8.3 The Brownian sample paths
8.4 Exponential martingales
8.5 d-dimensional Brownian motions
單元九 Stochastic Integrals9.1 Construction of stochastic integrals with respect to martingales
9.2 Stochastic integrals with respect to semimartingales
9.3 Itô formula
9.4 Integration by parts
9.5 Martingale representation theorem
9.6 Girsanov theorem
9.7 Local times
單元十 Stochastic Differential Equations10.1 Examples and some solution methods
10.2 An existence and uniqueness result
10.3 Weak and strong solutions
10.4 Feynman-Kac theorem
單元十一 Continuous-Time Models11.1 Market portfolios and arbitrage
11.2 Equivalent local martingale measures
11.3 Completeness
11.4 Pricing for attainable contingent claim
11.5 Black-Scholes-Merton formula
11.6 Parity relations
11.7 The greeks
單元十二 Hedging12.1 Hedging strategy for the simple contingent claim
12.2 Delta and gamma hedging
12.3 Superhedging
12.4 Quantile hedging
單元六 Volatility13.1 Historical volatility
13.2 Implied volatility
AppendixF . Convex Analysis

 

課程書目

S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.

參考書目

T. M. Apostol: Mathematical Analysis, Second Edition
M. Baxter and A. Rennie: Financial Calculus.
T. Björk: Arbitrage Theory in Continuous Time.
K. L. Chung: A Course in Probability Theory, Second Edition.
F. Delbaen and W. Schachermayer: The Mathematics of Arbitrage.
J. Elstrodt: Maβ- und Integrationstheorie, Third Edition.
H. Föllmer and A. Schied: Stochastic Finance. An Introduction in Discrete Time.
J. Jacod and Ph. Protter: Probability Essentials.
J. C. Hull: Options, Futures, & Other Derivatives, Sixth Edition.
I. Karatzas: Lectures on the Mathematics of Finance. I. Karatzas and S. E. Shreve: Brownian Motion and Stochastic Calculus, Second Edition.
I. Karatzas and S. E. Shreve: Method of Mathematical Finance.
D. Lamberton and B. Lapeyre: Introduction to Stochastic Calculus Applied to Finance.
B. Øksendal: Stochastic Differential Equations, An Introduction with Applications,Sixth Edition.
R. T. Rockafellar: Convex Analysis.
H. L. Royden: Real Analysis, Third Edition.
A.N. Shiryaev: Probability Theory, Second Edition.
S. E. Shreve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
R. L. Wheeden and A. Zygmund: Measure and integral.

 

評分標準

 

項目百分比
平時成績(作業)40%
期中考30%
期末考 30%

本課程行事曆提供課程進度與考試資訊參考。

 

章節 主題內容
單元七 Continuous-Time Martingales7.1 Stochastic processes
7.2 Uniform integrability
7.3 Martingale theory in continuous-time
7.4 Local martingales
7.5 Doob-Meyer decomposition
7.6 Semimartingales
單元八 Brownian Motions8.1 Scaled random walk
8.2 Brownian motions
8.3 The Brownian sample paths
8.4 Exponential martingales
8.5 d-dimensional Brownian motions
單元九 Stochastic Integrals9.1 Construction of stochastic integrals with respect to martingales
9.2 Stochastic integrals with respect to semimartingales
9.3 Itô formula
9.4 Integration by parts
9.5 Martingale representation theorem
9.6 Girsanov theorem
9.7 Local times
單元十 Stochastic Differential Equations10.1 Examples and some solution methods
10.2 An existence and uniqueness result
10.3 Weak and strong solutions
10.4 Feynman-Kac theorem
單元十一 Continuous-Time Models11.1 Market portfolios and arbitrage
11.2 Equivalent local martingale measures
11.3 Completeness
11.4 Pricing for attainable contingent claim
11.5 Black-Scholes-Merton formula
11.6 Parity relations
11.7 The greeks
preload imagepreload image