Introduction to Financial Mathematics I

財務數學導論(一)

本課程是由交通大學應用數學系提供。

本課程主要讓學生了解並熟悉研究財務金融方面所需之數學工具。

課程用書:S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.

參考用書:

  1. T. M. Apostol: Mathematical Analysis, Second Edition
  2. M. Baxter and A. Rennie: Financial Calculus.
  3. T. Björk: Arbitrage Theory in Continuous Time.
  4. K. L. Chung: A Course in Probability Theory, Second Edition.
  5. F. Delbaen and W. Schachermayer: The Mathematics of Arbitrage.
  6. J. Elstrodt: Maβ- und Integrationstheorie, Third Edition.
  7. H. Föllmer and A. Schied: Stochastic Finance. An Introduction in Discrete Time.
  8. J. Jacod and Ph. Protter: Probability Essentials.
  9. J. C. Hull: Options, Futures, & Other Derivatives, Sixth Edition.
  10. I. Karatzas: Lectures on the Mathematics of Finance.
  11. I. Karatzas and S. E. Shreve: Brownian Motion and Stochastic Calculus, Second  Edition.
  12. I. Karatzas and S. E. Shreve: Method of Mathematical Finance.
  13. D. Lamberton and B. Lapeyre: Introduction to Stochastic Calculus Applied to Finance.
  14. B. Øksendal: Stochastic Differential Equations, An Introduction with Applications,Sixth Edition.
  15. R. T. Rockafellar: Convex Analysis.
  16. H. L. Royden: Real Analysis, Third Edition.
  17. A.N. Shiryaev: Probability Theory, Second Edition.
  18. S. E. Shreve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
  19. R. L. Wheeden and A. Zygmund: Measure and integral.
    為求學習成效完美,請購買課本!

 

授課教師 應用數學系 吳慶堂老師
課程學分 3學分
授課年度 99學年度
授課對象 碩士班學生
預備知識 微積分
課程提供 課程影音   課程綱要   課程行事曆

課程目標

本課程主要讓學生了解並熟悉研究財務金融方面所需之數學工具。

 

課程章節

章節 主題內容
 課程介紹
單元一 Probability Theory1.1 Probability space
1.2 Random variables
1.3 Expectation
單元二 Discrete-Time Martingales2.1 Conditional probability and conditional expectation
2.2 Discrete time Martingales
2.3 Martingale transform and Doob decomposition
單元三 One-Period ModelIntroduction
3.1 Portfolios
3.2 Derivative securities
3.3 Absence of arbitrage
3.4 No arbitrage and price system
3.5 Martingale measures
3.6 Pricing
3.7 Complete market model
單元四 Multi-Period ModelIntroduction
4.1 The market model
4.2 Arbitrage opportunities
4.3 Martingale measures
4.4 Arbitrage-free prices for European contingent claim
單元五 American Contingent Claim5.1 Stopping time
5.2 American claims
5.3 Arbitrage-free prices
單元六 Measures of Risk Introduction
6.1 Monetary measure of risk
6.2 Coherent and convex risk measures
6.3 Acceptance sets
6.4 Robust representation of coherent risk measure
6.5 Robust representation of convex risk measures
AppendixA. Limits of Sequences of Numbers
B. Convergence of Sequences of Functions and Stochastic Processes I
C. Distribution Functions
D. Convergence of Sequences of Functions and Stochastic Processes II
E. Riemann-Stieltjes Integrals

 

課程書目

S. E. Shreve: Stochastic Calculus for Finance II: Continuous-Time Models, Springer, 2004.

參考書目

T. M. Apostol: Mathematical Analysis, Second Edition

M. Baxter and A. Rennie: Financial Calculus.

T. Björk: Arbitrage Theory in Continuous Time.

K. L. Chung: A Course in Probability Theory, Second Edition.

F. Delbaen and W. Schachermayer: The Mathematics of Arbitrage.

J. Elstrodt: Maβ- und Integrationstheorie, Third Edition.

H. Föllmer and A. Schied: Stochastic Finance. An Introduction in Discrete Time.
J
. Jacod and Ph. Protter: Probability Essentials.

J. C. Hull: Options, Futures, & Other Derivatives, Sixth Edition.

I. Karatzas: Lectures on the Mathematics of Finance.
I. Karatzas and S. E. Shreve: Brownian Motion and Stochastic Calculus, Second Edition.

I. Karatzas and S. E. Shreve: Method of Mathematical Finance.

D. Lamberton and B. Lapeyre: Introduction to Stochastic Calculus Applied to Finance.

B. Øksendal: Stochastic Differential Equations, An Introduction with Applications,Sixth Edition.

R. T. Rockafellar: Convex Analysis.

H. L. Royden: Real Analysis, Third Edition.

A.N. Shiryaev: Probability Theory, Second Edition.

S. E. Shreve: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.

R. L. Wheeden and A. Zygmund: Measure and integral.


評分標準

項目百分比
平時成績(作業)40%
期中考30%
期末考 30%

本課程行事曆提供課程進度與考試資訊參考。

章節 主題內容
 課程介紹
單元一 Probability Theory1.1 Probability space
1.2 Random variables
1.3 Expectation
單元二 Discrete-Time Martingales2.1 Conditional probability and conditional expectation
2.2 Discrete time Martingales
2.3 Martingale transform and Doob decomposition
單元三 One-Period ModelIntroduction
3.1 Portfolios
3.2 Derivative securities
3.3 Absence of arbitrage
3.4 No arbitrage and price system
3.5 Martingale measures
3.6 Pricing
3.7 Complete market model
單元四 Multi-Period ModelIntroduction
4.1 The market model
4.2 Arbitrage opportunities
4.3 Martingale measures
4.4 Arbitrage-free prices for European contingent claim
單元五 American Contingent Claim5.1 Stopping time
5.2 American claims
5.3 Arbitrage-free prices
單元六 Measures of Risk Introduction
6.1 Monetary measure of risk
6.2 Coherent and convex risk measures
6.3 Acceptance sets
6.4 Robust representation of coherent risk measure
6.5 Robust representation of convex risk measures
AppendixA. Limits of Sequences of Numbers
B. Convergence of Sequences of Functions and Stochastic Processes I
C. Distribution Functions
D. Convergence of Sequences of Functions and Stochastic Processes II
E. Riemann-Stieltjes Integrals

 

preload imagepreload image