Complex Analysis

本課程是由 國立陽明交通大學應用數學系 提供。

 

本課程主要目的是探討解析函數之微分及積分性質,作為後續研究之基礎。


課程用書:Complex Variables and Applications,James Ward Brown & Ruel V. Churchill,6th edition, McGraw-Hill, 1996.

為求學習成效完美,請購買課本!

Instructor(s) Department of Applied Mathematics Prof. Pei Yuan Wu
Course Credits 3 Credits
Academic Year 96 Academic Year
Level Third year university students
Prior Knowledge Advanced Calculus
Related Resources Course Video    Course Syllabus    Course Calendar

WeekCourse ContentCourse Video
第一章 Complex Numbers
Section1 Sums and Products
Section2 Basic Algebraic Properties Further Properties
Section3 Moduli
Section4 Complex Conjugates
Watch Online
Section5 Polor Form
Section6 Exponential Form
Section7 Powers and Roots
Watch Online
第一章 Complex Numbers
Section8 Regions in the Complex Plane
第二章 Analytic Functions
Section9 Functions of a Complex Variable
Section10 Mappings
Section11 Mappings by the Exponential Function
Watch Online
Section12 Limits
Section13 Theorems in Limits
Section14 Derivatives
Section15 Differentiation Formulas
Watch Online
Section16 Limits Involving the Points at Infinity
Section17 Continuity
Section18 Differentiatility
Watch Online
Section18 Differentiatility
Section19 Differentiatility Formulas
Section20 Cauchy-Riemann Equations
Section21 Reflectiotn Principle
Section22 C-R equation in Polar Form
Section23 Analytic Function
Watch Online
Section23 Analytic Functions
Section24 Harmonic Functions
Watch Online
Section25 Harmonic Functions-1
Section26 Uniquely Determined Analytic Functions
Section27 Refelction Principle
第三章 Elementary Functions
Section28 The Exponential Func
Watch Online
Section29 The Logarithmic Function
Section31 Branches and Derivatives of Logarithms
Section32 Complex Exponents Functions
Section33 Trigonometric Functions
Watch Online
Section34 Hyperbolic Functions
Section35 Inverse Trigonometric and Hyperbolic Functions
Section36 Derviatives of Functions
Section37 Integrals
Section38 Contours
Section39 Contours Integrals
Watch Online
Section40 Examples
Section41 Antiderivatives
Section42 Fundamental Theory of Integral
Section43 Examples
Watch Online
Section44 Cauchy-Goursat Theorem (VersionI)Watch Online
Section45 Cauchy-Goursat Theorem (VersionII)
Section46 Cauchy-Goursat Theorem (VersionIII)
Section47 Cauchy Integral Formula
Section48 Derivatives of Analytic Functions
Section49 Liouvilles Theorem
Watch Online
Section50 Maximum Modulus PrincipleWatch Online
Section50 Maximum Modulus Principle
第五章 Series
Section51 Convergence of Sequences
Section52 Convergence of Series
Section53 Taylor Series
Section54 Examples
Watch Online
Section55 Laurent Series
Section56 Examples
Watch Online
Section56 Examples
Section57 Absolate amd Uniform Convergence of Power Series
Watch Online
Section58 Continuity of Sums of Power Series
Section59 Integration and Differentiation of Power Series
Watch Online
Section59 Integration and Differentiation of Power Series
Section60 Uniqueness of Series Representations
Section61 Multiplication and Division of Power Series
第六章 Residues and Poles
Section62 Residues
Section63 Cauchy
Watch Online
Section61 Multiplication and Division of Power Series
第六章 Residues and Poles
Section62 Residues
Section63 Cauchys Residue Theorem
Watch Online
Section63 Cauchys Residue Theorem
Section64 Using a single Residue
Section65 The Three Types of Isolated Singular Points
Watch Online
Section66 Residues at Poles
Section67 Examples
Section68 Zeros of Analytic Functions
Watch Online
Section69 Zeros and Poles
Section70 Behavior of f Near Isolated Singular Points
Watch Online
Section70 Behavior of f Near Isolated Singular Points
第七章 Residues and Poles
Section71 Evaluation of Improper Integrals
Section72 Example
Watch Online
Section73 Improper Integrals from Fourier Analysis
Section74 Jordans Lemma
Section75 Indented PAths
Section76 An Indentation Around a Branch Point
Watch Online
Section77 Integration Along a Branch Cut
Section78 Definite Integrals Involving Sines and Cosines
Watch Online
Section79 Argument Principle
Section80 Rouches Theorem
Section81 Inverse Laplace Transforms
Section82 Examples
Watch Online
第八章 Mapping by Elementary Functions
Section86 Linear Fractional Transformations
第九章Conformal Mapping
Section94 Preservation of Angles
Watch Online

課程目標

本課程主要目的是探討解析函數之微分及積分性質,作為後續研究之基礎 。

 

課程章節

 

章節 主題內容
第一章 Complex numbers
第二章Analytic functions
第三章Elementary functions
第四章Integrals
第五章Series
第六章 Residues and poles
第七章Applications of residues
第八章Mapping by elementary functions

 

課程書目

Complex Variables and Applications,James Ward Brown & Ruel V. Churchill,6th edition, McGraw-Hill, 1996.

本課程行事曆提供課程進度與考試資訊參考。

學期週次
參考課程進度
第一週
  • Complex numbers
第二週
  • Complex numbers
第三週
  • Analytic functions
第四週
  • Analytic functions
第五週
  • Elementary functions
第六週
  • Elementary functions
第七週
  • Integrals
第八週
  • Integrals
第九週
  • 期中考
第十週
  • Series
第十一週
  • Series
第十二週
  • Residues and poles
第十三週
  • Residues and poles
第十四週
  • Applications of residues
第十五週
  • Applications of residues
第十六週
  • Applications of residues
第十七週
  • Mapping by elementary functions
第十八週
  • 期末考