Applied Maths- Linear Algebra, Vector Analysis - 106 Academic Year

本課程是由 國立陽明交通大學電子物理系提供。

本課程介紹在大學第二年如電磁學等專業課程所需之數學工具,包括線性代數與向量微積分,課程前2/3介紹線性代數而後1/3課程內容是向量微積分,預期學習後較易跨越進入高年級的專業領域課程。

從熟悉的空間向量出發了解線性空間的特性出發,介紹多元一次良立方程組與線性空間關聯,並引進矩陣數學工具來解問題,而持續探索矩陣、反矩陣及矩陣向量空間概念,更進一步介紹矩陣對角化與正交化的運算,最後介紹廣義的向量空間概念,並把廣義向量空間的線性轉換寫成矩陣運算,學習者可了解函數亦為廣義向量,及函數與函數之間正交的特性等,是進入進階之微分方程課程所需的基礎訓練,且能進一步理解量子物理中使用矩陣運算的廣義向量空間概念。在後1/3課程中介紹空間中曲線、曲率計算與線積分計算,並介紹向量微積分中重要的觀念-梯度、散度與旋度計算,此部分為電磁學一開始會用到的數學工具。

Textbook:

    1. Poole, David/ Lipsett, Roger”Linear Algebra – A Modern Introduction”Cengage Learning,2014
    2. D. G. Zill/W. S. Wright”Advanced Engineering Mathematics"Jones & Bartlett Learning,2016

    For perfect learning results, please buy textbooks!

     

    Instructor(s) Department of Electrophysics Prof. Wen-Bin Jian
    Course Credits 3 Credits
    Academic Year 106 Academic Year
    Level College Students
    Prior Knowledge High School Math Skills Freshman Physics Course - Calculus Skills
    Related Resources Course Video   Course Syllabus 

WeekCourse ContentCourse Video
Week 1Cartesian Plane、Vector in The Cartesian Plane、Vector AdditionWatch Online
Vector Addition、Vector in R^3 and R^n、Algebraic Properties of Vector in R^n and ProofWatch Online
Using Algebraic Properties for computation、Independent Vector Spanning R^2 Space、Linear Combination、Binary VectorWatch Online
Dot Product、Definition and Example、Algebraic Properties of Dot ProductWatch Online
Length、Unit Vector、The Cauchy-Schwartz and Triangle Inequality、Distance between Two VectorWatch Online
Angle between Two Vectors、Angle and Orthogonal Property、Dot Operation and Orthogonality of Function、Pythagoras’ Theorem and ProjectionWatch Online
Lines in R^2 and R^3Watch Online
Lines in R^2 and R^3、Planes in R^3Watch Online
Distance from a Point to a Line/Plane、ApplicationsWatch Online
Week 2Linear or Nonlinear Equation、A system of Linear Equation in R^2 and R^3、Coefficient and Augmented MetricesWatch Online
Row Echelon Form、Elementary Row Operation and Row Equivalent、Gaussian EliminationWatch Online
Rank and Gaussian-Jordan Elimination、Gaussian-Jordan Elimination、Homogeneous Systems、Linear Systems over Z_pWatch Online
Vector Concepts for Linear Combinations、Spanning Set for Space R^nWatch Online
Spanning Set for Space R^n、Linear independenceWatch Online
Linear independenceWatch Online
Application(Chemical、Network Analysis)Watch Online
Application(Circuit、Economic Models)Watch Online
Application(Finite Linear Games)、Numerical Solutions-Iterative MethodsWatch Online
Week 3Introduction to Matrix Operations、Matrix Operations、Matrix’s EqualityWatch Online
Matrix Addition and Scalar Multiplication、Matrix Multiplication、Partitioned MatricesWatch Online
Partitioned Matrices、Matrix Power、The Transpose of a MatrixWatch Online
Properties of Addition and Scalar Multiplication、Properties of Matrix MultiplicationWatch Online
Properties of The Transpose、The inverse of a MatrixWatch Online
Properties of Invertible Matrices、Elementary MatricesWatch Online
The Fundamental Theorem of Invertible Matrices、The Gaussian-Jordan Method for Computing The InverseWatch Online
The Gaussian-Jordan Method for Computing The Inverse、The LU FactorizationWatch Online
An Easy Way to Find LU Factorizations、The P^TLU Factorization、Computational ConsiderationWatch Online
Week 4Subspace、Row and Column Space of Matrice(Introduction)Watch Online
Row and Column Space of Matrice、Basis and Effective Procedures to Find BasisWatch Online
Dimension、Rank、The Fundamental Theorem of Invertible MatricesWatch Online
Introduction to Linear Transformations、Linear TransformationsWatch Online
Linear Transformations、Rotation About The Origin、Composition of Two TransformationsWatch Online
Composition of Two Transformations、Inverse of Linear Transformations、AssociativityWatch Online
Introduction to Markov Chain、Markov Chain-State Vector、Transition Matrix and Steady State VectorWatch Online
Application Example of Markov Chain、Linear Economic Model-Leontief Model、Productive、Population Growth-Leslie ModelWatch Online
Population Growth-Leslie Model、Graph、DigraphWatch Online
Digraph、Error-Correction CodesWatch Online
Week 5Introduction to Eigenvalues and Eigenvectors、EigenspaceWatch Online
Eigenspace、EigenpictureWatch Online
Eigenpicture-Zero Determinant、Calculate EigenvaluesWatch Online
Concept of Determinant and How to calculate、Determinant of n×n matrices、The Laplace ExpansionWatch Online
The Examples of Laplace Expansion、Properties of DeterminantsWatch Online
Determinants of Elementary Matrices、Determinants and Matrix Operations、Cramer’s Rule and The AdjointWatch Online
Eigenvalues of a Square MatrixWatch Online
Eigenvalues of a Square Matrix、The Fundamental Theorem of Invertible MatricesWatch Online
Polynomial of a matrix A and Its corresponding eigenvaluesWatch Online
Week 7Similar MatricesWatch Online
DiagonalizationWatch Online
Diagonalization、The Diagonalization TheoremWatch Online
The Power MethodWatch Online
The Power Method、The Shifted Power Method、The Inverse Power MethodWatch Online
The Shifted Inverse Power Method、Gerschgorin’s TheoremWatch Online
Markov ChainsWatch Online
Population Growth、Leslie matrix、Perron-Frobenius TheoremWatch Online
Linear Recurrence RelationWatch Online
System of Linear Differential EquationsWatch Online
Exponential of A - e^A、Discrete Linear Dynamical SystemsWatch Online
Discrete Linear Dynamical SystemsWatch Online
Week 8Orthogonal Sets of Vectors、CoordinateWatch Online
Orthogonal Matrices、Orthogonal ComplementsWatch Online
Orthogonal Projections、Orthogonal DecompositionsWatch Online
The Gram-Schmidt Process、QR FactorizationWatch Online
Orthogonal DiagonalizableWatch Online
Spectral TheoremWatch Online
Dual Codes-The generated Code Space C、Dual Codes-The Same or Equivalent CodeWatch Online
Quadratic Forms、Quadratic Forms-diagonalization and Principle Axes TheoremWatch Online
Quadratic Forms、Definition and Example、Diagonalization and Principal Axes TheoremWatch Online
The Fundamental Theorem of Quadratic FormsWatch Online
Graphing Quadratic Equations、Identify and graph the conicWatch Online
Graphing Quadratic Equations、Identify the quadric surface of the equationWatch Online
Week 9Vector Space、Examples of Kinds of Vector SpaceWatch Online
Examples of Vector or Non-Vector Space、Zero and Negative vector、SubspaceWatch Online
Spanning SetWatch Online
Linear Independence、 BasesWatch Online
CoordinateWatch Online
DimensionWatch Online
Change-of-Basis MatricesWatch Online
The Gauss-Jordan Method for Computing a change-of-Basis MatrixWatch Online
Week 10Linear Transformations、Definition and ExampleWatch Online
Properties of Linear Transformations,、Composition of Linear Transformations, Inverse of Linear TransformationWatch Online
The Kernel and Range of a Linear Transformations、Definition and ExampleWatch Online
The Kernel and Range of a Linear Transformations、The Rank Theorem、One-to-One and Onto Linear TransformationsWatch Online
The Kernel and Range of a Linear Transformations、The Rank Theorem、One-to-One and Onto Linear TransformationsWatch Online
Linear Transformations Represented by a MatrixWatch Online
Matrices of Composite and Inverse Linear TransformationsWatch Online
Change of Basis and SimilarityWatch Online
The Fundamental Theorem of Invertible MatricesWatch Online
1st Order Homogeneous,Linear,Differential,Equations、2nd Order Homogeneous,Linear,Differential,EquationsWatch Online
Week 11Extends from 1D to 3D Vector Space、Scalar Functions , Functions of Scalar of Functions of Vector、Vector Functions of VectorWatch Online
Vector-Function Curve,3D to 1D Vsinf Parameter 、Find the Intersection Curve 、Limits of a Vector Functions 、Continuity and Derivative of Vector FunctionWatch Online
Calculate the tangent line of a curve、Differentiation and Integration of the Curve、 The length of a Curve、The Arc length ParameterWatch Online
Trajectory of a particleWatch Online
Calculation of CurvatureWatch Online
Normal and Binormal Vectors、Tangent, Normal and Binormal Vectors、Another Method for the Calculation of Curvature、Curvature of Twisted CubicWatch Online
Level Curves for Functions of two variables、Functions of three variables F(x,y,z)、 Partial Derivatives of FunctionsWatch Online
Scalar Functions to Vector Functions、Gradient CalculationWatch Online
Concept of Gradient Calculation、Gradient CalculationWatch Online
Week 13Level Curves and GradientWatch Online
Vector fields,The del operatorWatch Online
Concept of Divergence Calculation、Curl less or Divergent less Potential、Scalar or Vector PotentialWatch Online
Line Integrals on a 2D planeWatch Online
Line Integrals on a 2D planeWatch Online
Line Integrals on a 2D plane-Plane Work done by forceWatch Online
Path Independence Integration Result、Conservative Vector FieldsWatch Online
Conservative Vector FieldsWatch Online
Test for a Conservative Vector fieldWatch Online
Week 14Introduction to Double Integrals、Applications of Double IntegralsWatch Online
Calculation of Double Integrals、Change of Variables、Double Integrals in Poar coordinatesWatch Online
Change of variablesWatch Online
Proof of Green’s TheoremWatch Online
Green’s Theorem and Calculation 、Stoke’s Theorem、Application of Green’s TheoremWatch Online
Application of Green’s Theorem、Apply Green’s Theorem in the region with holesWatch Online

課程目標

本課程介紹在大學第二年如電磁學等專業課程所需之數學工具,包括線性代數與向量微積分,課程前2/3介紹線性代數而後1/3課程內容是向量微積分,預期學習後較易跨越進入高年級的專業領域課程。


課程特色

從熟悉的空間向量出發了解線性空間的特性出發,介紹多元一次良立方程組與線性空間關聯,並引進矩陣數學工具來解問題,而持續探索矩陣、反矩陣及矩陣向量空間概念,更進一步介紹矩陣對角化與正交化的運算,最後介紹廣義的向量空間概念,並把廣義向量空間的線性轉換寫成矩陣運算,學習者可了解函數亦為廣義向量,及函數與函數之間正交的特性等,是進入進階之微分方程課程所需的基礎訓練,且能進一步理解量子物理中使用矩陣運算的廣義向量空間概念。在後1/3課程中介紹空間中曲線、曲率計算與線積分計算,並介紹向量微積分中重要的觀念-梯度、散度與旋度計算,此部分為電磁學一開始會用到的數學工具。

課程執行方式

課程參考David Poole編寫的”Linear Algebra – A Modern Introduction”及D. G. Zill與W. S. Wright編寫的”Advanced Engineering Mathematics”書中第九章內容安排,依此兩本教課書內容分別介紹線性代數及向量微積分編制投影片及製作課程影片,本課程影片內容分三段提供三階段式學習及三次學期檢測來確認學習狀況,三階段詳述如下。

   第一階段:
       Week01 複習熟悉的二維或三維空間向量,了解線性空間特性
       Week02 介紹多元一次線性方程組及探索其與線性向量空間的關聯
       Week03 矩陣、矩陣運算、反矩陣、Gauss-Jordan方法找反矩陣、因式分解
       Week04 矩陣的線性空間、基底、維度、解空間、線性轉換
   第二階段:
       Week05 本徵值、本徵向量、行列式
       Week07 相似矩陣、矩陣對角化、迭代數值法求本徵值、對角化矩陣應用
       Week08 正交矩陣、正交投影、Gram-Schmidt方法將矩陣正交化、對稱矩陣正交對角化、正交矩陣應用
       Week09 廣義的向量空間、線性獨立、廣義向量空間的基底與維度
   第三階段:
       Week10 線性轉換與其矩陣運算
       Week11 向量函數、曲線、曲率、偏微分、梯度向量運算
       Week13 切面語法線、旋度與散度、線積分、路徑無關
       Week14 重積分、極座標、Green的理論、面積分