Complex Variables - 103 Academic Year

本課程是由 國立陽明交通大學電機工程學系 提供。

熟悉複數變數之理論及應用。

 

Textbook:老師自編講義。

For perfect learning results, please buy textbooks!

 

Instructor(s) College of Electrical and Computer Engineering Prof. Yon-Ping Chen
Course Credits 3 Credits
Academic Year 103 Academic Year
Level Sophomore
Prior Knowledge Calculus, Differential equations
Related Resources Course Video   Course Syllabus   Course Calendar  Course Handout 

課程目標

熟悉複數變數之理論及應用。

 

課程章節

章節 章節內容
Complex numbersCV1 Complex Numbers: Basic Operations and Properties
CV2 Complex Numbers: Exponential Form and de Moivre’s Formula
CV3 Complex Numbers: Regions in the Complex Plane
Analytic FunctionsCV4 Analytic Functions : Functions of Complex Variables
CV5 Analytic Functions : Limits and Continuity
CV6 Analytic Functions : Derivatives and Cauchy-Riemann Equations
CV7 Analytic Functions : Analytic Functions
Elementary Functions CV8 Elementary Functions : LogarithmicFunctions
CV9 Elementary Functions : Trigonometric and Hyperbolic Functions
IntegralsCV10 Integrals : Contour Integrals
CV11 Integrals : Cauchy Integral Formula
SeriesCV12 Series
Residues and Poles CV13 Residues: Cauchy’s Residue Theorem
CV14 Residues: Poles and Zeros
CV15 Residues: Evaluation of Improper Integrals
CV16 Residues: Special Integral methods
CV17 Residues: Inverse Laplace Transform
Applications of ResiduesCV18 Argument Principle
MappingCV19 Mapping: Elementary Transformations
CV20 Mapping: Conformal Transformation


課程書目

教學講義為主,可參考一般訊號與系統之書籍。

 

參考書目

Complex Variable and Application by Brown and Churchill (Published by McGraw-Hill) 新月圖書/東華書局


評分標準

項目百分比
第一次期中考25%
第二次期中考25%
期末考25%
作業(含小考)20%
專題報告5%

本課程行事曆提供課程進度與考試資訊參考。

上課日期
參考課程進度
09/16
  • 課程介紹
    CV1 Complex Numbers: Basic Operations and Properties
09/18
  • CV2 Complex Numbers: Exponential Form and de Moivre’s Formula
    CV3 Complex Numbers: Regions in the Complex Plane
09/23
  • CV3 Complex Numbers: Regions in the Complex Plane
    CV4 Analytic Functions : Functions of Complex Variables
    CV5 Analytic Functions : Limits and Continuity
09/25
  • CV5 Analytic Functions : Limits and Continuity
    CV6 Analytic Functions : Derivatives and Cauchy-Riemann Equations
09/30
  • CV6 Analytic Functions : Derivatives and Cauchy-Riemann Equations
10/02
  • CV6 Analytic Functions : Derivatives and Cauchy-Riemann Equations
    CV7 Analytic Functions : Analytic Functions
10/07
  • CV7 Analytic Functions : Analytic Functions
10/09
  • CV8 Elementary Functions : LogarithmicFunctions
10/14
  • CV8 Elementary Functions : LogarithmicFunctions
    CV9 Elementary Functions : Trigonometric and Hyperbolic Functions
10/16
  • CV9 Elementary Functions : Trigonometric and Hyperbolic Functions
10/21
  • 第一次考試
10/23
  • CV9 Elementary Functions : Trigonometric and Hyperbolic Functions
    CV10 Integrals : Contour Integrals
10/28
  • CV10 Integrals : Contour Integrals
    CV11 Integrals : Cauchy Integral Formula
11/06
  • CV11 Integrals : Cauchy Integral Formula
    CV12 Series
11/11
  • CV12 Series
11/13
  • CV12 Series
    CV13 Residues: Cauchy’s Residue Theorem
11/18
  • CV13 Residues: Cauchy’s Residue Theorem
    CV14 Residues: Poles and Zeros
11/20
  • CV14 Residues: Poles and Zeros
11/25
  • CV14 Residues: Poles and Zeros
    CV15 Residues: Evaluation of Improper Integrals
11/27
  • CV15 Residues: Evaluation of Improper Integrals 
12/02
  • 第二次考試
12/04
  • CV16 Residues: Special Integral methods
12/09
  • CV16 Residues: Special Integral methods
    CV17 Residues: Inverse Laplace Transform
12/11
  • CV17 Residues: Inverse Laplace Transform
    CV18 Argument Principle
12/16
  • CV18 Argument Principle
12/18
  • CV19 Mapping: Elementary Transformation
12/23
  • CV19 Mapping: Elementary Transformation
12/25
  • CV20 Mapping: Conformal Transformation
12/30
  • CV20 Mapping: Conformal Transformation
    CV17 Residues: Inverse Laplace Transform
01/06
  • CV20 Mapping: Conformal Transformation
01/08
  • CV20 Mapping: Conformal Transformation
01/13
  • 期末考

課程講義 Course Handout

章節 下載連結
CV_R_Laplace transformmPDF
CV1 Complex Numbers: Basic Operations and PropertiesPDF
CV2 Complex Numbers: Exponential Form and de Moivre’s FormulaPDF
CV3 Complex Numbers: Regions in the Complex PlanePDF
CV4 Analytic Functions : Functions of Complex VariablesPDF
CV5 Analytic Functions : Limits and ContinuityPDF
CV6 Analytic Functions : Derivatives and Cauchy-Riemann EquationsPDF
CV7 Analytic Functions : Analytic FunctionsPDF
CV8 Elementary Functions : LogarithmicFunctionsPDF
CV9 Elementary Functions : Trigonometric and Hyperbolic FunctionsPDF
CV10 Integrals : Contour IntegralsPDF
CV11 Integrals : Cauchy Integral FormulaPDF
CV12 SeriesPDF
CV13 Residues: Cauchy’s Residue TheoremPDF
CV14 Residues: Poles and ZerosPDF
CV15 Residues: Evaluation of Improper IntegralsPDF
CV16 Residues: Special Integral methodsPDF
CV17 Residues: Inverse Laplace TransformPDF
CV18 Argument PrinciplePDF
CV19 Mapping: Elementary TransformationsPDF
CV20 Mapping: Conformal TransformationPDF
preload imagepreload image