本課程是由 國立陽明交通大學運輸與物流管理學系 提供。
This video is an invited lecture by Mr. Shu-Cheng Fang, the content of the lecture differs slightly from the course outline.
Textbook:
For perfect learning results, please buy textbooks!
Instructor(s) | Department of Transportation and Logistics Management Prof. Shu-Cheng Fang |
---|---|
Course Credits | 3 Credits |
Academic Year | 98 Academic Year |
Level | College Students、Graduate Student |
Prior Knowledge | Mathematics-related courses and Research Interests |
Related Resources | Course Video Course Syllabus Course Calendar |
Week | Course Content | Course Video |
---|---|---|
第一講 | Watch Online | |
第二講 | Watch Online | |
第三講 | Watch Online | |
第四講 | Watch Online | |
第五講 | Watch Online | |
第六講 | Watch Online | |
第七講 | Watch Online | |
第八講 | Watch Online | |
第九講 | Watch Online |
課程目標
This course is divided into three major parts dealing with convex analysis, optimality conditions and duality, and computational methods. The ultimate goal in optimization studies is to develop efficient computational schemes for solving the problem at hand.
1. Convex analysis involves convex sets and convex functions and is central to the study of the field of optimization.
2. Optimality conditions and duality can be used not only to develop termination criteria but also to motivate and design the computational method itself.
3. To describe many computational methods (algorithms) for solving different classes of nonlinear programming problems.
本錄影課程為方述誠老師應邀授課,授課內容與課程大綱稍有不同。
課程章節
章節 | 章節內容 |
第一週 | Mathematical Review |
第二週 | Convex Sets |
第三週 | Convex Functions and Generalizations |
第四週 | Nonlinear Programming |
第五週 | Motivation, Intuition, Speculation, Theorization |
第六週 | General Form of NLP |
第七週 | Conjugate Transformation |
第八週 | Duality Theory |
第九週 | Solution Methods of NLP |
第十週 | One Dimensional Search |
第十一週 | Newtons Method |
第十二週 | Conjugate Gradient Method |
第十三週 | Constrained Optimization |
第十四週 | Necessary Conditions for Optimality |
第十五週 | Sensitivity Analysis |
第十六週 | Lagrangian Dual Problem |
第十七週 | Constrained Optimization Methods |
課程書目
課堂筆記
評分標準
項目 |
作業 |
期中考 |
期末考 |
本課程行事曆提供課程進度與考試資訊參考。
學期週次 | 上課日期 | 參考課程進度 |
第一週 | 02/21-02/25 | |
第二週 | 02/28-03/04 | |
第三週 | 03/07-03/11 | |
第四週 | 03/14-03/18 | |
第五週 | 03/21-03/25 | |
第六週 | 03/28-04/01 |
|
第七週 | 04/04-04/08 | |
第八週 | 04/11-04/15 | |
第九週 | 04/18-04/22 | |
第十週 | 04/25-04/39 | |
第十一週 | 05/02-05/06 | |
第十二週 | 05/09-05/13 | |
第十三週 | 05/16-05/20 | |
第十四週 | 05/23-05/27 | |
第十五週 | 05/30-06/03 | |
第十六週 | 06/06-06/10 | |
第十七週 | 06/13-06/17 | |
第十八週 | 06/20-06/24 |
|